90 research outputs found

    The critical needs and challenges for genetic architecture studies in Africa

    Get PDF
    Human genetic studies have long been vastly Eurocentric, raising a key question about the generalizability of these study findings to other populations. Because humans originated in Africa, these populations retain more genetic diversity, and yet individuals of African descent have been tremendously underrepresented in genetic studies. The diversity in Africa affords ample opportunities to improve fine-mapping resolution for associated loci, discover novel genetic associations with phenotypes, build more generalizable genetic risk prediction models, and better understand the genetic architecture of complex traits and diseases subject to varying environmental pressures. Thus, it is both ethically and scientifically imperative that geneticists globally surmount challenges that have limited progress in African genetic studies to date. Additionally, African investigators need to be meaningfully included, as greater inclusivity and enhanced research capacity afford enormous opportunities to accelerate genomic discoveries that translate more effectively to all populations. We review the advantages, challenges, and examples of genetic architecture studies of complex traits and diseases in Africa. For example, with greater genetic diversity comes greater ancestral heterogeneity; this higher level of understudied diversity can yield novel genetic findings, but some methods that assume homogeneous population structure and work well in European populations may work less well in the presence of greater heterogeneity in African populations. Consequently, we advocate for methodological development that will accelerate studies important for all populations, especially those currently underrepresented in genetics.Peer reviewe

    Determining ancestry proportions in complex admixture scenarios in South Africa using a novel proxy ancestry selection method

    Get PDF
    Admixed populations can make an important contribution to the discovery of disease susceptibility genes if the parental populations exhibit substantial variation in susceptibility. Admixture mapping has been used successfully, but is not designed to cope with populations that have more than two or three ancestral populations. The inference of admixture proportions and local ancestry and the imputation of missing genotypes in admixed populations are crucial in both understanding variation in disease and identifying novel disease loci. These inferences make use of reference populations, and accuracy depends on the choice of ancestral populations. Using an insufficient or inaccurate ancestral panel can result in erroneously inferred ancestry and affect the detection power of GWAS and meta-analysis when using imputation. Current algorithms are inadequate for multi-way admixed populations. To address these challenges we developed PROXYANC, an approach to select the best proxy ancestral populations. From the simulation of a multi-way admixed population we demonstrate the capability and accuracy of PROXYANC and illustrate the importance of the choice of ancestry in both estimating admixture proportions and imputing missing genotypes

    A Panel of Ancestry Informative Markers for the Complex Five-Way Admixed South African Coloured Population

    Get PDF
    Admixture is a well known confounder in genetic association studies. If genome-wide data is not available, as would be the case for candidate gene studies, ancestry informative markers (AIMs) are required in order to adjust for admixture. The predominant population group in the Western Cape, South Africa, is the admixed group known as the South African Coloured (SAC). A small set of AIMs that is optimized to distinguish between the five source populations of this population (African San, African non-San, European, South Asian, and East Asian) will enable researchers to cost-effectively reduce false-positive findings resulting from ignoring admixture in genetic association studies of the population. Using genome-wide data to find SNPs with large allele frequency differences between the source populations of the SAC, as quantified by Rosenberg et. al's -statistic, we developed a panel of AIMs by experimenting with various selection strategies. Subsets of different sizes were evaluated by measuring the correlation between ancestry proportions estimated by each AIM subset with ancestry proportions estimated using genome-wide data. We show that a panel of 96 AIMs can be used to assess ancestry proportions and to adjust for the confounding effect of the complex five-way admixture that occurred in the South African Coloured population.Department of HE and Training approved lis

    Determining ancestry proportions in complex admixture scenarios in South Africa using a novel proxy ancestry selection method

    Get PDF
    Publication of this article was funded by the Stellenbosch University Open Access Fund.The original publication is available at http://www.plosone.org/Admixed populations can make an important contribution to the discovery of disease susceptibility genes if the parental populations exhibit substantial variation in susceptibility. Admixture mapping has been used successfully, but is not designed to cope with populations that have more than two or three ancestral populations. The inference of admixture proportions and local ancestry and the imputation of missing genotypes in admixed populations are crucial in both understanding variation in disease and identifying novel disease loci. These inferences make use of reference populations, and accuracy depends on the choice of ancestral populations. Using an insufficient or inaccurate ancestral panel can result in erroneously inferred ancestry and affect the detection power of GWAS and meta-analysis when using imputation. Current algorithms are inadequate for multi-way admixed populations. To address these challenges we developed PROXYANC, an approach to select the best proxy ancestral populations. From the simulation of a multi-way admixed population we demonstrate the capability and accuracy of PROXYANC and illustrate the importance of the choice of ancestry in both estimating admixture proportions and imputing missing genotypes. We applied this approach to a complex, uniquely admixed South African population. Using genome-wide SNP data from over 764 individuals, we accurately estimate the genetic contributions from the best ancestral populations: isiXhosa (33%±0:226), {Khomani SAN (31%±0:195), European (16%±0:118), Indian (13%±0:094), and Chinese (7%±0:0488). We also demonstrate that the ancestral allele frequency differences correlate with increased linkage disequilibrium in the South African population, which originates from admixture events rather than population bottlenecks.Stellenbosch UniversityMRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB ResearchCarnegie Corporation Grant and by the Department of Clinical Laboratory Sciences, University of Cape TownPublishers' versio

    Evaluating the Accuracy of Imputation Methods in a Five-Way Admixed Population

    Get PDF
    Genotype imputation is a powerful tool for increasing statistical power in an association analysis. Meta-analysis of multiple study datasets also requires a substantial overlap of SNPs for a successful association analysis, which can be achieved by imputation. Quality of imputed datasets is largely dependent on the software used, as well as the reference populations chosen. The accuracy of imputation of available reference populations has not been tested for the five-way admixed South African Colored (SAC) population. In this study, imputation results obtained using three freely-accessible methods were evaluated for accuracy and quality. We show that the African Genome Resource is the best reference panel for imputation of missing genotypes in samples from the SAC population, implemented via the freely accessible Sanger Imputation Server

    Genetic Resistance to Mycobacterium tuberculosis Infection and Disease

    Get PDF
    Natural history studies of tuberculosis (TB) have revealed a spectrum of clinical outcomes after exposure to Mycobacterium tuberculosis, the cause of TB. Not all individuals exposed to the bacterium will become diseased and depending on the infection pressure, many will remain infection-free. Intriguingly, complete resistance to infection is observed in some individuals (termed resisters) after intense, continuing M. tuberculosis exposure. After successful infection, the majority of individuals will develop latent TB infection (LTBI). This infection state is currently (and perhaps imperfectly) defined by the presence of a positive tuberculin skin test (TST) and/or interferon gamma release assay (IGRA), but no detectable clinical disease symptoms. The majority of healthy individuals with LTBI are resistant to clinical TB, indicating that infection is remarkably well-contained in these non-progressors. The remaining 5–15% of LTBI positive individuals will progress to active TB. Epidemiological investigations have indicated that the host genetic component contributes to these infection and disease phenotypes, influencing both susceptibility and resistance. Elucidating these genetic correlates is therefore a priority as it may translate to new interventions to prevent, diagnose or treat TB. The most successful approaches in resistance/susceptibility investigation have focused on specific infection and disease phenotypes and the resister phenotype may hold the key to the discovery of actionable genetic variants in TB infection and disease. This review will not only discuss lessons from epidemiological studies, but will also focus on the contribution of epidemiology and functional genetics to human genetic resistance to M. tuberculosis infection and disease

    A Sex-Stratified Genome-Wide Association Study of Tuberculosis Using a Multi-Ethnic Genotyping Array

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human genetic component. Males seem to be more affected than females and in most countries the TB notification rate is twice as high in males than in females. While socio-economic status, behavior and sex hormones influence the male bias they do not fully account for it. Males have only one copy of the X chromosome, while diploid females are subject to X chromosome inactivation. In addition, the X chromosome codes for many immune-related genes, supporting the hypothesis that X-linked genes could contribute to TB susceptibility in a sex-biased manner. We report the first TB susceptibility genome-wide association study (GWAS) with a specific focus on sex-stratified autosomal analysis and the X chromosome. A total of 810 individuals (410 cases and 405 controls) from an admixed South African population were genotyped using the Illumina Multi Ethnic Genotyping Array, specifically designed as a suitable platform for diverse and admixed populations. Association testing was done on the autosome (8,27,386 variants) and X chromosome (20,939 variants) in a sex stratified and combined manner. SNP association testing was not statistically significant using a stringent cut-off for significance but revealed likely candidate genes that warrant further investigation. A genome wide interaction analysis detected 16 significant interactions. Finally, the results highlight the importance of sex-stratified analysis as strong sex-specific effects were identified on both the autosome and X chromosome
    • …
    corecore